

Machine Learning Ensembles for Probabilistic Segmentation of Pores in Electron Microscopy

Ensembles für maschinelles Lernen zur probabilistischen Segmentierung von Poren in der Elektronenmikroskopie

Marco Brysch^{1,2}, Ben Laurich¹, Monika Sester²

¹ Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover

²Institut für Kartographie und Geoinformatik, Gottfried Wilhelm Leibniz University, Hannover

Bundesanstalt für Geowissenschaften und Rohstoffe

www.bgr.bund.de

Motivation

Die genaue Segmentierung von Poren in elektronenmikroskopischen Aufnahmen ist für das Verständnis von Gesteinseigenschaften wie der Durchlässigkeit von entscheidender Bedeutung.

Herausforderungen:

- Bestehende Methoden haben Probleme mit Rauschen, Artefakten und komplexen Porenformen.
- Rauschen und begrenzte Auflösung machen die Segmentierung kleiner Poren schwierig und fehleranfällig.
- MIP und Gaspyknometrie messen Poren mit einer Größe von nur 3 *nm*, verfügen aber nicht über die räumliche Detailtiefe.

Scanning electron microscopy (SEM) Broad Ion Beam Milling (BIB)

Rock samples

Host roc

BGR

Manuelle Segmentierung

[3] Houben, M. E., Desbois, G., and Urai, J. L. (2013). Pore morphology and distribution in the shaly facies of opalinus clay (mont terri, switzerland): Insights from representative 2d bib-sem investigations on mm to nm scale. Applied Clay Science, 71:82–97.

Automatische Segmentierung von Broad Ion Beam (BIB)-SEM-Bildern [1]

Herausforderungen automatischer Segmentierungen:

- Variabilität der Bildgebung: Variable REM-Einstellungen führen zu Inkonsistenzen, welche die Automatisierung beeinträchtigen.
 Fließende Porenränder: Allmähliche Übergänge zwischen Porengrenzen sind schwer zu erkennen.
 - **Auflösungsgrenzen:** Kleine Poren werden bei geringerer Auflösung unscharf, was die Kantenerkennung erschwert.
 - **Mehrdeutige Grauwerte:** Identische Pixelintensitäten können unterschiedliche Strukturen darstellen.

[1] Klaver, J., et al. "BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany." International Journal of Coal Geology 103 (2012): 12-25. [2] Houben, M. E., and János U. In situ characterization of the microstructure and porosity of Opalinus Clay (Mont Terri Rock Laboratory, Switzerland). Diss. Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013.

Mehrdeutige Grauwerte

Machine Learning Classification

Linea

Ergebnisse:

- 9 ML-Klassifikatoren wurden implementiert und trainiert
- Kein ML-Klassifikator allein liefert zufrieden-٠ stellende Ergebnisse
- IoU ist kein gutes Maß für die Qualitäts-• bestimmung der Segmentierung

	ML Method	Acc	F1	мсс	IoU
1	QDA	0.971	0.772	0.767	0.630
2	MLP	0.976	0.798	0.790	0.664
3	CatBoost	0.980	0.831	0.821	0.712
4	PAC	0.977	0.799	0.790	0.665
5	LR	0.978	0.811	0.802	0.682
6	RF	0.979	0.820	0.810	0.696
7	ET	0.980	0.829	0.820	0.709
8	SGD	0.978	0.804	0.795	0.672
9	SVM	0.976	0.792	0.782	0.655

- Die Energiefunktion E(x) kombiniert Pixelwahrscheinlichkeiten und räumliche Beziehungen.
- Die Annäherung mit dem Gauß-Filter reduziert die Rechenkomplexität und erhält gleichzeitig die Pixelinteraktionen.
- Die Mean-Field-Approximation minimiert die Kullback-Leibler-Divergenz zur Optimierung der Label-Verteilung.
- Dadurch werden die wahrscheinlichsten Label für jedes Pixel gefunden.

 [4] Krähenbühl, Philipp, and Vladlen Koltun. "Efficient inference in fully connected crfs with gaussian edge potentials." Advances in neural information processing systems 24 (2011).
[5] Adams, Andrew, Jongmin Baek, and Myers Abraham Davis. "Fast high-dimensional filtering using the permutohedral lattice." Computer graphics forum. Vol. 29. No. 2. Oxford, UK: Blackwell Publishing Ltd, 2010.

CRF Ensemble Segmentation

Porengrößenverteilung & Unschärfegrad

Zusammenfassung

- 1. Wir haben ein automatisiertes Segmentierungsverfahren entwickelt, das mehrere Klassifikatoren des maschinellen Lernens (MLCs) und Conditional Random Fields (CRF) verwendet, um Poren in BIB-SEM-Bildern zu segmentieren.
- 2. Die Methode erzeugt eine binäre Porenmaske und ein Wahrscheinlichkeitsfeld, so dass wir die Segmentierungsunsicherheit für jede Pore schätzen können.
- 3. Die CRF reduziert Rauschen, hat eine verbesserte Porenranderkennung und minimiert Segmentierungsfehler.
- 4. Allerdings ist die Methode durch die Auflösungsgrenze des REM begrenzt.
- 5. Unser Ansatz ermöglicht räumliche Analysen von Porendichte, Morphologie und Orientierung.

- [1] Klaver, J., et al. "BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany." International Journal of Coal Geology 103 (2012): 12-25.
- [2] Houben, M. E., and János U. In situ characterization of the microstructure and porosity of Opalinus Clay (Mont Terri Rock Laboratory, Switzerland). Diss. Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013.
- [3] Houben, M. E., Desbois, G., and Urai, J. L. (2013). Pore morphology and distribution in the shaly facies of opalinus clay (mont terri, switzerland): Insights from representative 2d bib-sem investigations on mm to nm scale. Applied Clay Science, 71:82–97.
- [4] Krähenbühl, Philipp, and Vladlen Koltun. "Efficient inference in fully connected crfs with gaussian edge potentials." Advances in neural information processing systems 24 (2011).
- [5] Adams, Andrew, Jongmin Baek, and Myers Abraham Davis. "Fast high-dimensional filtering using the permutohedral lattice." Computer graphics forum. Vol. 29. No. 2. Oxford, UK: Blackwell Publishing Ltd, 2010.